[ad_1] The research fellow of artificial intelligence in healthcare will conduct research in the EPSRC funded project on “Advancing ma
[ad_1]
The research fellow of artificial intelligence in healthcare will conduct research in the EPSRC funded project on “Advancing machine learning to achieve real-world early detection and personalised disease outcome prediction of inflammatory arthritis (IA)”.
Over 20 million people in the UK live with rheumatic and musculoskeletal diseases (RMD), and inflammatory arthritis (IA) is a major subdivision of RMD causing joint inflammation leading to damage. IA presents with non-specific symptoms and there is currently no diagnostically definitive single biomarker for IA. Early detection is critical but challenging, and delay in detection and late referral often result in loss of the window of opportunity when effective treatment should start and delays can lead to disability and associated unemployment. For patients who are diagnosed with IA, IA outcomes and activities such as flare-up are very heterogeneous in their manifestations between individual patients.
Despite significant unmet needs, RMD, especially IA, is still an underexplored area of real-world machine learning (ML) application in comparison with other diseases. Although there are studies showing potential determinants of IA, there is no research, or any machine learning methods that can identify the undetected determinants-combination that can offer a useful level of prediction of IA. On the other hand, existing ML methods in IA, and healthcare in general, still rely on a “one-size-fits-all” paradigm rendering generic learning algorithms, suboptimal on the individual level especially as IA is known to be heterogenous in nature from the time of diagnosis. Although successful translation requires bringing together expertise and stakeholders from many disciplines, the development of ML
solutions is currently occurring in silos, and there is a lack of holistic and scalable ML development pipeline. Despite all the limitations of current ML, there are huge opportunities to advance ML, especially in rheumatology applications, because rheumatology has already been leading the way in the use of virtual clinics and remote monitoring in the UK. It is now time to advance ML using data generated for real early detection and personalised management of IA.
Our vision: The proposed project will develop useful and responsible machine learning methods to achieve real-world early detection and personalised disease outcome prediction of inflammatory arthritis. We will develop a holistic and scalable approach through an interdisciplinary team addressing the pressing healthcare challenges of inflammatory arthritis and the limitations of machine learning to accelerate real-world ML application in healthcare.
Closing date for applications will be 8th November 2023
Interview date will be held on 27th November 2023
Informal contact detailsAlternative informal contact details
Contact role:Professor and Principal Investigator of the EPSRC project
Contact name:Professor Weizi (Vicky) Li
Contact phone:+44 (0) 118 378 5436
Contact email:weizi.li@henley.ac.uk
Alternative informal contact details
Contact role: Head of Business Informatics, Systems & Accounting
Contact name: Professor Keiichi Nakata
Contact phone:+44 (0) 118 378 4423
Contact email: k.nakata@henley.ac.uk
Applications from job seekers who require sponsorship to work in the UK are welcome and will be considered alongside all other applications. By reference to the applicable SOC code for this role, sponsorship may be possible under the Skilled Worker Route. Applicants should ensure that they are able to meet the points requirement under the PBS. There is further information about this on the UK Visas and Immigration Website.
[ad_2]
Source link
COMMENTS